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Abstract We analyze the reliability of the Lagrangian stochastic micromixing method in
predicting higher-order statistics of the passive scalar concentration induced by an elevated
source (of varying diameter) placed in a turbulent boundary layer. To that purpose we ana-
lyze two different modelling approaches by testing their results against the wind-tunnel
measurements discussed in Part I (Nironi et al., Boundary-Layer Meteorology, 2015, Vol.
156, 415–446). The first is a probability density function (PDF) micromixing model that
simulates the effects of the molecular diffusivity on the concentration fluctuations by taking
into account the background particles. The second is a newmodel, named VPΓ , conceived in
order to minimize the computational costs. This is based on the volumetric particle approach
providing estimates of the first two concentration moments with no need for the simulation
of the background particles. In this second approach, higher-order moments are computed
based on the estimates of these twomoments and under the assumption that the concentration
PDF is a Gamma distribution. The comparisons concern the spatial distribution of the first
four moments of the concentration and the evolution of the PDF along the plume centreline.
The novelty of this work is twofold: (i) we perform a systematic comparison of the results
of micro-mixing Lagrangian models against experiments providing profiles of the first four
moments of the concentration within an inhomogeneous and anisotropic turbulent flow, and
(ii) we show the reliability of the VPΓ model as an operational tool for the prediction of the
PDF of the concentration.
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1 Introduction

Concentration fluctuations generated by the dispersion of a contaminant from a localized
source in a turbulent flow characterize many biological and chemical processes. With fluc-
tuations, we mean here the random behaviour observed for a dispersing scalar in space and
time. The full statistical characterization of this random field requires a multi-point, multi-
time probability density function (PDF) of the concentration (e.g. Monin and Yaglom 1975).
This is ultimately as complex as fully solving the turbulent flow and it is therefore not feasible.
More practically, we may search for the full statistical characterization of the fluctuations in
any point of the field, independently from any other point (in space and time), i.e. for the
field of the one-point one-time concentration PDF (see e.g. Pope 2000). Hereafter, we refer
to the one-point one-time concentration PDF simply as the concentration PDF.

Common dispersion models based on the Reynolds average concept attempt to charac-
terize the first moment (i.e. the mean) of the concentration PDF only, where the mean is a
fundamental property of the PDF. If a process (physical, chemical or biological) has a linear
dependence on the concentration, the knowledge of the mean concentration is indeed suffi-
cient to characterize the mean behaviour of this dependent process. However, non-linearity
is observed in many cases of practical interest. In such cases, the knowledge of the sec-
ond and higher moments of the concentration PDF is needed. Particularly relevant cases are
the accidental or intentional release of toxic and flammable substances. For example, Gant
et al. (2011) relate the likelihood of ignition of a flammable substance to the integral of the
concentration PDF between the upper and lower flammability limits at any point. Gant and
Kelsey (2012) relate instead the toxic load directly to the integral of the n-th power of the
concentration times the concentration PDF (here n is the toxic load exponent, which Gant
and Kelsey (2012) consider equal to two for chlorine and to eight for carbon dioxide). More
generally, the knowledge of the concentration PDF is necessary but not sufficient to define the
toxic load, which may also require the additional formulation of a model for the correlated
concentration time series (e.g. Du et al. 1999; Hilderman and Wilson 1999; Cassiani et al.
2009). Nonetheless, a necessary starting point, and a significant modelling challenge, is the
formulation of a model that is able to forecast the concentration PDF.

To our knowledge, only two modelling methods can be used to directly forecast the con-
centration PDF at the high Reynolds number characterizing atmospheric flows. These are the
transported Lagrangian or Eulerian PDF (micromixing) method (see e.g. Luhar and Sawford
2005; Cassiani et al. 2005a, b, c, 2007; Garmory et al. 2006; Cassiani et al. 2010; Postma
et al. 2011; Amicarelli et al. 2012) and the large-eddy simulation method (see e.g. Henn
and Sykes 1992; Xie et al. 2004). In the latter case, subgrid-scale concentration fluctuations
need to be modelled separately (Colucci et al. 1998) or simply neglected, otherwise the full
turbulent flow field would be available at the expense of a formidable computational cost.

All other modelling approaches allow for a direct estimate of two moments of the con-
centrations only, and rely on assumptions about the form of the concentration PDF. Among
these modelling methods, there are the two-particle Lagrangian model (Durbin 1980; Thom-
son 1990; Franzese and Borgas 2002), the meandering plume approach (Gifford 1959) and
its extensions (Yee and Wilson 2000; Cassiani and Giostra 2002; Franzese 2003; Marro
et al. 2015), the Eulerian model solving balance equations for the second-order moment (e.g.
Milliez and Carissimo 2008; Yee 2009), and heuristic Lagrangian methods based on single
particle models, e.g. Cassiani (2013).

To our knowledge, the two-particle models are still limited to extremely idealized turbu-
lence conditions, i.e. homogeneous and isotropic turbulence. Applications of the meandering
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plume approach can be instead extended to the case of non-homogeneous and anisotropic
turbulent flows. The meandering model has however two main limitations: (i) it is not fully
adapted to flows developing in complex geometries, and (ii) it requires the setting of several
model parameters, including the intensity of the in-plume concentration fluctuations and the
functional form of the concentration PDF (e.g. Marro et al. 2015). In this context, second-
order closure models have been shown to be more flexible and adapted in forecasting the
second moment of concentration also in complex geometries (when the location of interest
is not close to the pollutant source), such as those characterizing urban environments (e.g.
Milliez and Carissimo 2008; Yee 2009). Lastly, recent studies have proposed to extend the
use of single-particle Lagrangian models (Thomson 1987) in heuristic ways, to account for
the evolution of the second moment of the concentration fluctuations (Cassiani 2013; Manor
2014;Kaplan 2014). This is the case of the volumetric particle approach (VPA)model that can
be viewed as a simplification of a “traditional” Lagrangian PDF micromixing method (Cas-
siani 2013). This model is computationally efficient, since it decouples the evolution of the
dispersing plume from the background, adopting an approach similar to that used byAlessan-
drini and Ferrero (2009) for reactive plumes. Different to full Lagrangian PDF micromixing
models, this approach requires simulating the trajectories of the marked particles originated
at the source only.

The assumptions on the functional form of the PDF (required by the above methods) rely
on experimental investigation conducted both in the open field and wind tunnel (a review of
these can be found in e.g. Wilson 1995; Nironi et al. 2015; Oettl and Ferrero 2017). Here
we are particularly concerned with the results presented in Part I (Nironi et al. 2015) and
supporting the existence of a universal function for the concentration PDF, as also previously
suggested by, e.g., Villermaux and Duplat (2003), Duplat and Villermaux (2008), Yee and
Skvortsov (2011), Efthimiou et al. (2016). Nironi et al. (2015) show that the PDFs due to a
point source in a turbulent boundary layer are modelled with good accuracy using a family
of one-parameter Gamma distributions. Such distributions depend on a single parameter k,
which is a function of the fluctuation intensity ic = σc/c (c and σc are the mean and the
standard deviation of the concentration, respectively),

p(χ) = kk

Γ (k)
χk−1 exp(−kχ), (1)

where k = i−2
c , Γ (k) is the Gamma function, and χ ≡ c/c (c is the sample space variable).

Herein we compare two micromixing modelling approaches, the transported Lagrangian
PDFmicromixingmodel (PMM), adopting an Interactionwith the ConditionalMean (IECM)
closure, and a new model, named VPΓ , based on assuming that the concentration PDF
is a Gamma distribution whose two first moments are computed with the volume particle
approach (Cassiani 2013). To that purpose we use as a benchmark the experimental data of
Nironi et al. (2015), concerning the dispersion in a turbulent boundary layer of a fluctuating
plume of passive scalar emitted by an elevated source with two different diameters. As far as
we are aware, this represents the first systematic evaluation of this kind of model in the case
of inhomogeneous anisotropic turbulence and up to the fourth-order concentration moment.

2 Model Equations

The formulation of both models considered here relies on a classical macro-mixing scheme.
The temporal evolution of the velocity and position of an ensemble of independent fluid
particles is governed by the following stochastic differential equations,
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dU ′
i = ai (X,U′, t)dt + bi j (X,U′, t)dξ j , (2)

dXi = (ui +U ′
i )dt, (3)

where ai and bi j are the deterministic drift and the stochastic diffusive terms, respectively,U ′
i

is the Lagrangian velocity fluctuation, ui is the Eulerian mean velocity, dξ j is an incremental
Wiener process (Gardiner 1983) with zero mean and variance dt , and Xi is the particle
position.

The deterministic acceleration term ai is a function of the turbulent statistics and its three-
dimensional formulation is obtained by using the well-mixed condition (Thomson 1987).
With this condition, and assuming a Gaussian velocity PDF with negligible correlations
between the different components, the drift term ai is given by

ai = − U ′
i

TLi
+ 1

2

∂σ 2
ui

∂xi
+ U ′

i

2σ 2
ui

(
Uj

∂σ 2
ui

∂x j

)
, (4)

with i = 1, 2, 3, where σui represents the r.m.s. velocity of the three components of the
Eulerian velocity, i.e. σu , σv , and σw , and TLi are the Lagrangian integral time scales. These
represent the autocorrelation coefficients of the Lagrangian velocity and can be expressed as
a function of the velocity variances σ 2

ui , the mean turbulent kinetic energy dissipation rate ε,
and the Kolmogorov constant C0 (Tennekes 1982) as,

TLi = 2σ 2
ui

C0ε
. (5)

Although this latter relationship was originally obtained for Gaussian homogeneous turbu-
lence, it is widely used in non-homogeneous and even non-Gaussian turbulence conditions
(e.g. Luhar and Britter 1989; Cassiani et al. 2015).

The stochastic diffusive term bi j is defined from the Kolmogorov’s hypotheses of self-
similarity and local isotropy in the inertial subrange (Obukhov 1959; Monin and Yaglom
1975, p. 572; Pope 1987) as,

bi j = δi j
√
C0ε, (6)

where δi j is the Kronecker delta.

2.1 PDF Micromixing Model

The PDFmicromixing model (PMM) aims to solve a transport equation for the concentration
PDF explicitly accounting for the dissipative effects of the molecular diffusivity (Pope 1998).
This approach simulates explicitly the micromixing process as given by a mass exchange
between polluted fluid particles and ‘clean’ particles of ambient air, whose trajectories have
therefore to be simulated within the whole domain. For this reason, this approach requires a
very large amount of computational resources in order to provide accurate solutions.

The simulation of the higher-order moments of the concentration field requires then the
introduction of a Markovian state variable C representing the particle concentration,

dC

dt
= φ(C,X,U′, t), (7)

where the drift coefficient φ is responsible for the dissipation of the scalar variance. The
IECM model (Pope 1998) assumes the following parametrization,

dC

dt
= −C − C |X,U

τm
, (8)
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whereC |X,U is the mean scalar concentration conditioned on the local position and velocity
and τm represents the time scale of the localmixing,which is driven by relative dispersion, and
is defined as a function of local velocity variance, mean turbulent kinetic energy dissipation
rate, source size, and particle flight time (Cassiani et al. 2005a). The formulation of the
micromixing time scale is briefly reported in the Appendix. This model has the desirable
property of leaving unaltered the mean concentration field (Fox 1996; Pope 1998; Sawford
2004) and it has been used to simulate the concentration PDF due to atmospheric dispersion
from localized sources (e.g. Cassiani et al. 2005a; Postma et al. 2011).

2.2 The VPΓ Model

This modelling approach is based on the use of the VPA model and the assumption that
the concentration PDF is given by a Gamma distribution. The VPA model was developed by
Cassiani (2013) in order to compute thefirst twomoments of the concentrationfield (mean and
variance) without taking into account the background particles. This approach substantially
simplifies the representation of the mixing phenomenon and it requires to simulate explicitly
only the plume particles. As a consequence, a considerable saving in computational resources
is achieved (see e.g. Fig. 2), and to that purpose, the micromixing process is simulated as
a change in a fictitious volume Vp associated with the plume particles. The dissipation
variance, induced by the molecular diffusivity and driven by the turbulent eddies, is then
related to dilution of the marked particles, i.e. an increase of Vp . To define the volume Vp we
introduce the mass of tracer mp carried by a particle, and for a non-reactive scalar this mass
is conserved (dmp/dt = 0) so that Vp = mp/C . The temporal evolution of the volume Vp

is then computed as

Vp(t + dt) = Vp(t)
C(t)

C(t + dt)
, (9)

where the concentration C is modelled through Eq. 7, by implementing the Interaction by
Exchange with the Mean (IEM) model (i.e. with Eq. 8 but adopting a unique velocity class,
e.g. Pope 2000),

dC

dt
= −C − C(X)

τm
, (10)

where C(X) = c is the mean concentration in the space domain and τm has the same
significance and formulation of that discussed in Sect. 2.1 for the IECMmodel (see Eq. 8 and
the Appendix). The computation of c requires the spatial discretization of the computational
domain and depends on the global mass Mc in each space element,

c = Mc

Vc
= 1

Vc

Nc∑
i=1

mpi =
Nc∑
i=1

Ci
Vpi

Vc
, (11)

where Nc is the particle number held in the generic cell of volume Vc. It is worth noting that
the use of the IEM model in Eq. 11 does not alter the mean concentration field in the VPA
framework (Cassiani 2013).

The term Vpi /Vc can be seen as the probability that the particle i takes the concentration

Ci , and the second-order moment c2 is computed as,

c2 =
Nc∑
i=1

C2
i
Vpi

Vc
. (12)
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The approximations introduced in the VPA model provide reliable estimates of the first-
and second-order statistics, but precludes the accuracy in the estimate of higher-order ones
(Cassiani 2013); for this reason, the VPA model cannot describe the correct evolution of the
full concentration PDF.

The computation of the higher-order concentration moments (> 2) relies here on the
experimental finding by Nironi et al. (2015) about the form of the one-point concentration
PDFs, which was shown to be reliably modelled by a family of one-parameter Gamma
distributions (Eq. 1). Assuming a Gamma distribution, the higher-order statistics can then
be computed, based on the estimates of the two first moments provided by the VPA model
(Eqs. 11 and 12 ).

3 Numerical Code

The Lagrangian stochastic model (Eqs. 2 and 3) and the micromixing models PMM and
VPA are implemented in a numerical code using a dynamical expanding grid to minimize
the computational resources while maintaining a good accuracy of the numerical solutions
(Cassiani et al. 2005a). This approach consists in initially generating a structured grid around
the source. During the simulation the grid is advected by the mean field, and expands around
the plume as the plume grows. The cell-size expansion is determined by the vertical and
transverse plume spreads, while the following boundary conditions are imposed:

– at the top and lateral boundaries, the particle velocity and position are elastically reflected
and the concentration is absorbed;

– at the ground, the particles are elastically reflected and they conserve their concentration.

The elastic reflection of the particles is able to ensure the well-mixed condition (Thomson
1987) if the turbulence is Gaussian and homogeneous. No simple reflection scheme satisfies
the well-mixed condition where the PDF for the normal velocity is asymmetric or locally
inhomogeneous (Wilson and Flesch 1993; Wilson and Sawford 1996). A general treatment
of boundaries ensuring the well-mixed condition is discussed in Thomson and Montgomery
(1994). According to Wilson and Flesch (1993), an elastic reflection is acceptable in wall-
bounded Gaussian inhomogeneous turbulence, e.g. neutral surface-layer flow.

The micromixing time scales required in the IECMmodel and IEMmodel (Eqs. 8 and 10)
are estimated during a pre-processing step, computing the trajectories of a smaller ensemble
of particles released at the source location, while the mean concentrations are computed
on-line during the calculations thus allowing for the straightforward inclusion of chemical
reactions (Cassiani et al. 2005a; Cassiani 2013).

4 Model Parameters

The PMM and VPA models require the setting of several free parameters, whose values are
generally obtained by fitting the numerical estimates of the first- and second-order concen-
tration moments to the relative values provided by the experiments (e.g. Postma et al. 2011).
These parameters are the Kolmogorov constant C0 that influences the Lagrangian integral
time scales (and therefore the mean concentration), the initial source distribution σ0, which
depends on the source diameter ds , the Richardson–Obukhov constant Cr and the micromix-
ing constantμt , which affect themicromixing time (and therefore the concentration variance)
The values adopted in the simulations are summarized in Table 1.
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Table 1 Model parameter values
adopted in the simulations

C0 σ0 Cr μt,PMM μt,V PA

4.5
√
2/3ds 0.3 0.9 0.54

The difference in the empirical constants of the micromixing time scale—μt,PMM and
μt,V PA—is due to the approximation of the mixing process adopted in the VPA model
(Cassiani 2013). The timestep �t is defined as the minimum among a small fraction of the
Lagrangian time scale, the micromixing time scale τm , and the time scale given by the ratio
between grid cell size and σw , the standard deviation of the vertical component of the velocity.

The number of velocity classes used in the PMM model is 529 (23 for each of the two
spatial directions). In the PMMmodel the source is represented by marking the particles with
a normally distributed scalar concentration Csrc,

Csrc,PMM = Q

2πσ 2
0 ux

exp

(
− r2

2σ 2
0

)
, (13)

where Q is the source mass flow, ux is the longitudinal Eulerian mean velocity at the source
location (xs, ys, zs), and r2 = (y − ys)2 + (z − zs)2 is the distance between the particle
and the source in the yz-plane. We use here the Gaussian source in the PPM model to be
consistent with earlier work (Cassiani et al. 2005a; Postma et al. 2011). In the VPA model
the source is approximated by a cylindrical top-hat distribution of size

√
12σ0,

Csrc,V PA = Q
π
4 (12σ 2

0 )ux
, (14)

where the size
√
12σ0 imposed in Eq. 14 is set in order to be consistent with the standard

deviation of the Gaussian distribution in Eq. 13.
The choice for a different source condition in theVPAmodel is due to the need of this latter

model of having a well-defined initial source volume to bound the initial particles distribution
and define the initial particle volume. As discussed in Cassiani (2013), this volume is related
to the source section and the mean flow.

5 Results

We simulated the dispersion of a passive scalar fluctuating plume in the neutral boundary
layer and compared the numerical results provided by the two micromixing models—PMM
and VPΓ—with the wind-tunnel measurements of Nironi et al. (2015). We simulated the
continuous releases emitted from an elevated source (zs/δ = 0.19) of varying diameter ds :
(1) ES3 (ds = 3 mm, i.e. ds = 0.00375δ), and (2) ES6 (ds = 6 mm, i.e. ds = 0.0075δ),
where δ is the boundary-layer thickness (equal to 0.8 m).

The statistics of the velocity field required as input data for the Lagrangian stochastic
models are: the mean longitudinal velocity (Fig. 1a), the standard deviation of the velocity
components (Fig. 1b), and the turbulent kinetic energy dissipation rate (Fig. 1c).

5.1 Profiles of Concentration Statistics

Firstly, the reliability of the model is evaluated by focusing on the first four moments of the
concentration PDF.We consider the same statistics used inNironi et al. (2015) andMarro et al.
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Fig. 1 Vertical profiles of the velocity field imposed in the numerical simulations: amean longitudinal velocity
ux , b standard deviations of the three components of the velocity σu , σv , and σw , c turbulent kinetic energy
dissipation rate ε. The velocity statistics are normalized using two different velocity scales: the freestream
velocity u∞ and the friction velocity u∗. The ratio between the two is u∗/u∞ = 0.037

x/δ

m
4/

c

Np = 2 × 108

Np = 8 × 108

0 1 2 3 4 5
0

2

4

6

8

10(a)

x/δ

i c

Np = 8 × 106

Np = 2 × 107

0 1 2 3 4 5
0

1

2

3(b)

Fig. 2 Influence of the number of particles on the high-order statistics of the concentration vs x/δ for source
ES3 at the plume centreline: a PMM m∗

4/c
∗, b VPA ic

(2015), i.e. the non-dimensional mean concentration c and the second-, third-, fourth-order
moments around the mean,

m∗
i =

⎡
⎣ 1

Nc

Nc∑
p=1

(Cp − c)i

⎤
⎦
1/ i

u∞δ2

Q
, (15)

with i = 2, 3, 4, and where Nc is the number of particles in a control volume and Cp is the
Lagrangian particle concentration. Note that, in what follows, the second order is referred to
as σ ∗

c = m∗
2.

For the PMM model we performed two simulations with varying number of particles
Np, 2 × 108 and 8 × 108, in order to investigate the influence of Np on the accuracy of
the numerical solutions. In Fig. 2a we report the longitudinal evolution of the fourth-order
moment for the smaller source (ES3). When increasing Np , the general tendencies of the
numerical solutions as a function of the distance from the source do not vary, even though
the profiles become smoother. All the PMM results presented herein were computed using
8 × 108 particles. The sensitivity of the VPA model to the particle number is significantly
reduced compared to the PMMmodel (see Fig. 2b), and very smooth solutions were obtained
with Np = 2 × 107. Note that the third- and fourth-order moments are obtained from the
lower moments through the use of the Gamma PDF. Therefore, their longitudinal profiles are
as smooth as those of the lower moments.
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Fig. 3 Results of the PMM model: longitudinal evolution of the concentration statistics: a normalized mean
concentration c∗, b fluctuation intensity ic , c third-order moment m∗
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skewness Sk , f kurtosis Ku

In order to study the global behaviour of the two models, we focus on the longitudinal
profiles of the first four moments of the concentration at the source height zs and at y = 0.
We also focus on the crosswind profiles at two different distances from the source: (1)
x/δ = 0.625, corresponding to the absolute maximum of the concentration fluctuations, and
(2) x/δ = 3.75, the position where all concentration statistics become independent of the
source size (see Fig. 3).
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5.1.1 PMM Model

The experimental data show that themean concentration is independent of the source diameter
(slight differences can only be detected close to the source location, see Fig. 3a), which
instead has a major influence on higher-order moments (Fackrell and Robins 1982; Nironi
et al. 2015) up to a distance of approximately x/δ = 3.75 from the source (Fig. 3b–d). The
comparison between the measurements and the numerical results along the plume centreline
in the x-direction shows three main features. First, the PMM model is able to compute very
accurate solutions for the mean concentration (Fig. 3a). Second, the agreement between
experimental and numerical profiles of ic is very satisfactory in all the domain, despite some
small differences for the ES3 source at x/δ = 1.25 (Fig. 3b). Here, the evaluation of σ ∗

c is
accurate for the ES6 source, whereas the peak of fluctuations induced by the smallest source
is underestimated. Third, even though the values of the m3 and m4 are reliably simulated
in the near-field, the model fails in the far-field. Here the model significantly overestimates
the experimental values and predicts a spurious influence of the source size on m3 and m4

(Fig. 3c, d).
In Fig. 3e, f we also plot the longitudinal evolution of the skewness Sk and the kurtosis Ku

of the concentration, providing information about the asymmetry and the tails of the PDF.
Both parameters are significantly overestimated by the PMM model, which predicts almost
constant values in the far-field and is not able to reproduce the general tendency given by the
experimental data (this aspect will be further investigated in Sect. 5.2).

The experiments show that both Sk and Ku slightly decrease in the far-field, as the PDF
concentration slowly tends to a Gaussian distribution. Note however that at x/δ = 5 the
experimental centreline concentration PDF is characterized by Sk = (m∗

3/σ
∗
c )3 ≈ 1.7 and

Ku = (m∗
4/σ

∗
c )4 ≈ 10. This shows that, at the end of our domain, the PDF is far from being

a Gaussian (which is characterized by Sk = 0 and Ku = 3).
The transverse profiles at x/δ = 0.625 show that in the near-field the PMM model

provides reliable predictions of the first four concentrationmoments for both sources (Fig. 4).
In particular, the accordance for the largest source is very satisfactory, while only a slight
overestimate of m∗

3 and m
∗
4 is visible for the ES3 source.

As shown by the experiments, at x/δ = 3.75, the concentration PDF becomes independent
of the source size. This behaviour is correctly reproduced by the model for c∗ and σ ∗

c , whose
profiles are in very good agreement with the experimental data (Fig. 5a, b). As already
enlightened by the longitudinal profiles (Fig. 3), the numerical estimates of the third- and
fourth-order moments show instead two main problems: (i) a significant overestimate of the
experimental values, and (ii) a persistent influence of the source diameter (Fig. 5c, d).

We can therefore conclude that the PMMmodel provides very accurate predictions of the
concentration PDF in the near-field. In the far-field the PMMmodel is instead able to reliably
simulate the first two moments of the concentration only, and fails in reproducing the higher-
order moments. Cassiani et al. (2005a) underline that a likely reason for this behaviour is the
inability of the IECM (and IEM) deterministic models to correctly relax the concentration
PDF in the absence of a mean scalar gradient.

This behaviour is in agreement with that recently observed by Amicarelli et al. (2017) in
analyzing the dispersion from a point source in grid turbulence. By comparing the results
of an IECM model with experimental data collected at a single downwind position, they
found that, despite an optimal matching of the intensity of concentration fluctuations, the
skewness and kurtosis were significantly overestimated by the model. As a possible solution
to improve the accuracy of these estimates, Amicarelli et al. (2017) suggest increasing the
mixing by lowering the value of the micromixing time scale. This implies a slight worsening
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Fig. 4 Results of the PMM model: transverse profiles of the concentration statistics at the source height and
x/δ = 0.625: a c∗, b σ∗
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4

of the accuracy of the estimate of the concentration fluctuation intensity, while improving
that of skewness and kurtosis.

5.1.2 VPΓ Model

As specified in Sect. 2.2, this approach is based on the VPA model for computing the spatial
distribution of the first two moments of the concentration field, i.e. c∗ and σ ∗

c , and on the
assumption that the concentration PDF is a Gamma distribution, i.e. that the third- and the
fourth- order moments are given by

m∗
3 = (2ic)

1/3 σ ∗
c , (16)

m∗
4 = (

6i2c + 3
)1/4

σ ∗
c . (17)

Figure 6 shows the longitudinal evolution of the first four-order statistics of the concen-
tration at the plume centreline. The model is able to simulate c∗ and ic for the whole domain
with good accuracy (Fig. 6a, b), and provides reliable estimates of the higher-order statistics
(Fig. 6c, d). In doing this, the VPΓ model is able to reproduce correctly the effects of the
source size, including its vanishing influence in the far-field. As a consequence the model
predicts well also the evolution of both skewness and kurtosis (Fig. 6e, f). Despite this gen-
eral good agreement between the simulated and measured values, it is still possible to detect
discrepancies between the two. For source ES3, the numerical solutions of ic slightly under-
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Fig. 5 Results of the PMM model: transverse profiles of the concentration statistics at the source height and
x/δ = 3.75: a c∗, b σ∗
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estimate the experiments in the near-field, at x/δ = 0.625, and in the intermediate field, at
x/δ = 1.25.

In the intermediate field, i.e. at x/δ = 1.25, the concentration field induced by the ES6
source is well-reproduced by the model. The computed higher-order moments (m∗

3 and m∗
4)

of the ES3 source underestimate instead the experimental values. However, the relative error
is limited (about 15% on the centreline). Note also that in the intermediate field the VPΓ

model tends to slightly underestimate the influence of the source size on the second and the
higher-order moments. In the far-field, at x/δ = 3.75 and x/δ = 5, the model values are
marginally larger than the experimental ones.

To further investigate these aspects, we focus on the transverse profiles at varying distances
from the source. At x/δ = 0.625, the numerical profiles of all the moments present a general
good agreement with the measurements for both sources (Fig. 7a–d). Only small differences
can be found at the peaks of σ ∗

c , m
∗
3, and m∗

4 produced by the ES3 source (we recall that
Fig. 7a, b represent the output of the VPA model, whereas Fig. 7c, d are obtained assuming
that the PDF is a Gamma distribution). At x/δ = 3.75 the experimental data show that
the concentration PDFs are independent of the source diameter (Fig. 8), behaviour that is
well reproduced by the model. Although the numerical simulations do not give exactly the
same values for the two sources, the differences between the two profiles are very small.
Furthermore, the estimates of the concentration statistics are in good agreement with the
experiments.
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5.2 One-Point Concentration PDF

Finally, we turn to the analysis of the concentration PDFs. For the PMM model, the compu-
tation of the PDFs is made in the classical way: we collect the concentration values carried
by a large number of particles in a small control volume and we organize them according to
their frequency. For the VPΓ model, the shape of the PDF is imposed to be that of a Gamma
distribution, completely determined by c and σc (see Eq. 1). The PDFs are evaluated at y = 0,
z = zs , and at varying distances from the release point. The PDFs are normalized with the
local mean concentration and they are plotted for both linear and logarithmic scales. The
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Fig. 7 Results of the VPΓ model: transverse profiles of the concentration statistics at the source height and
x/δ = 0.625: a c∗, b σ∗
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4

linear scale highlights the changes in the PDF shape occurring in the near-and the far-field
(Fig. 9a, b), whereas the logarithmic scale emphasizes how the low frequency values of the
sample space variable affect the higher-order moments, namely the skewness and the kurtosis
(Fig. 9c, d).

Note that the fluctuating plume considered here is characterized by a large intermittency
in the near-field, where the dispersion process is dominated by the meandering (Nironi et al.
2015). In particular, instantaneous concentration measurements show a majority of values
very close to zero and few values marked by very high concentration. This implies that the
concentration PDF assumes an exponential-like shape (Fig. 9a), which both models are able
to reproduce. Increasing the distance from the source, the influence of themeandering process
becomes negligible, the intermittency at the plume centreline reduces and the form of the
PDF shifts to a log-normal-like distribution. Figure 9b shows that, at x/δ = 5, both the PMM
and VPΓ models simulate correctly the experimental data, at least qualitatively.

Further insight into the accuracy of the two micromixing models can be obtained by plot-
ting the concentration PDFs on logarithmic scale plots (Fig. 9c, d). This helps in evidencing
the discrepancies between experimental and modelling results both for small and large val-
ues of concentrations. A main indication about the accuracy in the estimates of the PDF is
given by the ability to reproduce the values of skewness and kurtosis, providing information
about the tails of the PDF (e.g. Heinz 2003). In order to quantify this, we also compute the
following relative errors,
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Fig. 8 Results of the VPΓ model: transverse profiles of the concentration statistics at the source height and
x/δ = 3.75: a c∗, b σ∗
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RESk =
∣∣∣∣∣ Skmod − Skexp

Skexp

∣∣∣∣∣ , (18)

REKu =
∣∣∣∣∣Kumod − Kuexp

Kuexp

∣∣∣∣∣ , (19)

where Skexp and Kuexp are the experimental values of skewness and kurtosis, respectively,
and Skmod and Kumod are those estimated numerically.

In Fig. 9c we can observe the three PDFs at x/δ = 0.625 in more detail. For low values
of χ we observe some differences between the experimental PDF and that evaluated with
the PMM model. Note, however, that this disagreement does not preclude the model from
correctly estimating both the mean and the variance of the PDF (Fig. 3a, b). The relative
errors for Sk and Ku are lower than 21% (RESk ,PMM = 0.206 and REKu ,PMM = 0.143,
respectively Fig. 10a, b). A similar behaviour is observed for the results of the VPΓ model,
where RESk ,V PΓ = 0.21 and REKu ,V PΓ = 0.46, even the relative error of the kurtosis is
slightly larger than that of the PMM model. The very low relative errors ReKu reveal that in
the near-field, despite the differences observed in Fig. 9c, both models reproduces accurately
the complete experimental PDF, including the behaviour of the tails of the distributions.

In the far-field the PMM and VPΓ behave differently (Fig. 9d, see also Sects. 5.1.1 and
5.1.2). The form of the PDF computed with the PMM model suggests that, with respect
to the experimental data, the large values of χ are overestimated and the low values are
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Fig. 9 Concentration PDF of the ES6 source at y = 0, z/δ = zs/δ: a linear scale at x/δ = 0.625, b linear
scale at x/δ = 5.0, c logarithmic scale at x/δ = 0.625, d logarithmic scale at x/δ = 5.0
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Fig. 10 Longitudinal evolution of the relative error of the skewness and kurtosis at the plume centreline: a
Sk , b Ku

underestimated. The differences existing between the VPΓ solutions and the measurements
are small and the reliability of the model is satisfactory. The magnitude of the relative errors
indicates that, for the larger source, theVPΓ relative errors are lower than 30% (RESk ,V PΓ =
0.06 and REKu ,V PΓ = 0.28), whereas for the PMM model they exceed 300% for the
skewness and 900% for the kurtosis (RESk ,PMM = 3.26 and REKu ,PMM = 9.34, see also
Fig. 10a, b).
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Fig. 11 Concentration PDFs produced by ES6 and ES3 sources at y = 0, z/δ = zs/δ, x/δ = 5.0, a
experiments, b VPΓ model, c PMM model

The persistence of the influence of the source size on m3 and m4 in the far-field is an
aspect of the PMM model that deserves to be discussed. The experiments show that the two
sources, ES3 andES6, induce the same concentration field at distances larger than x/δ = 3.75
from the release location. The VPΓ model reproduces this feature with good approximation
(Fig. 6), whereas the solutions computed by the PMM model exhibit noticeable differences
until x/δ = 5.0 (Fig. 3).

In Fig. 11 we show the PDFs of the concentration field induced by the two sources (with
different size) at x/δ = 5.0, as estimated by the experiments and the VPΓ model and PMM
model simulations. Negligible differences between the sources can be detected for both the
experimental data and the VPΓ model simulations (Fig. 11a, b). In contrast, for the PMM
results we observe that the tails of the concentration PDF are quite different for the two
source sizes (Fig. 11c). Although the values of the normalized concentration, χ , close to
10 are characterized by very low frequencies (≤ 10−3), they are responsible for the large
discrepancies previously observed between the ES6 and ES3 sources in the computation of
m3 and m4 (see Fig. 3b, c).

6 Discussion and Conclusions

We have tested two micromixing model formulations, the PDF micromixing model (PMM)
and the VPΓ model and we have investigated their ability in estimating the concentration
statistics of a passive scalar emitted within a turbulent boundary layer. The PDFmicromixing
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model (PMM) is a Lagrangian model implementing the IECM closure, for simulating the
diffusive mass exchanges between particles. The VPΓ model consists in using the volume
particle approach (Cassiani 2013) to compute the first two moments of the concentration and
in assuming that the PDF is a Gamma distribution, i.e completely defined by the first two
moments (Villermaux and Duplat 2003; Duplat and Villermaux 2008; Yee and Skvortsov
2011; Nironi et al. 2015). The PMM and VPA models were implemented in a Lagrangian
stochastic model, using a dynamical expanding grid (Cassiani et al. 2005a).

We simulated the dispersion of a fluctuating plume produced by a continuous release
from two point sources of different diameter and we compared the numerical results with
the experimental dataset reported in Nironi et al. (2015). The numerical solutions show
that the PMM model is able to correctly simulate the concentration statistics in the near-
field, reproducing effects of the source size on the higher-order moments. In the far-field, the
numerical and experimental values of themean and standard deviation are in good agreement.
Conversely, the values of the modelled third- and fourth-order moments, when compared to
the experimental data, show twomain limitations of the PMMmodel. Firstly, the PMMmodel
clearly tends to overestimate the measurements; secondly, the numerical profiles of m3 and
m4 are still sensitive to the size of the source. This is markedly different from that observed
in the experiments (where the source size effects vanishes for x ≥ 3.75δ). This behaviour
can be reasonably attributed to the inability of the the IECM deterministic model to correctly
relax the concentration PDF form towards that of a Gaussian distribution in the absence of a
relevant mean scalar gradient (see e.g. Pope 2000, p. 550). This overestimates the occurrence
of concentration values that are larger than the mean where the mean concentration gradients
are weak.

These limitations may be overcome by computing the higher-order statistics using the
mean and variance, both reliably computed in the PMM model, and assuming that the PDF
is a Gamma distribution. We stress that the Gamma distribution hypothesis could be applied
to any model providing accurate estimates of the first two moments of the concentration,
including, e.g., the PMM model, VPA model, higher-order RANS models, etc. Here we
chose to calculate the first two concentration moments with the VPA model requiring a
number of particles that is significantly smaller than that needed by the PMM model, with a
significant saving of memory and computing time. The latter simulation approach, referred
to here as the VPΓ model, is then suitable for the simulation of dispersion phenomena for
operational purposes.

Acknowledgements M. Cassiani was partly supported by the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation programme under grant agreement No 670462
(COMTESSA).

Appendix

We report here the formulation of the micromixing time scale τm presented in Cassiani et al.
(2005a). In isotropic turbulence τm is assumed as depending on the time scale τr of the
relative dispersion, i.e. the spreading of the plume around its centre of mass,

τm = μtτr = μt
σr

σur
(20)

where μt is an empirical constant to be set, σr is the relative plume spread around the

plume’s centroid, and σur =
√
u2r is the r.m.s of the relative velocity fluctuations. The term
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ur represents the difference between a turbulent velocity component and the corresponding
velocity component of the instantaneous centre-of-mass (meandering process). We model σr
as,

σ 2
ur = σ 2

u

(σr

L

)2/3
(21)

whereσ 2
u is the variance of the turbulent velocity, and L represents the Eulerian integral length

scale parametrized assuming the stationarity of the energy cascade (Sawford and Stapountzis
1986),

L =
(
3σ 2

u /2
)3/2

ε
. (22)

When σr = L the meandering process becomes negligible with respect to the relative dis-
persion and all the energy contributes to the expansion. For this reason, we imposed the
constraint σur = σu , if σr > L , and parametrized σr as follows,

σ 2
r = d2r

1 + (
d2r − σ 2

0

)
/
(
σ 2
0 + 2σ 2

u TL t
) , (23)

d2r = Crε(t0 + t)3, (24)

where t0 = (
σ 2
0

/
Crε

)1/3
is the inertial formulation for a dispersion from a finite source

size (Franzese 2003), σ0 is the source size, and TL = 2σ 2
u

/
C0ε is the Lagrangian time

scale. Following Cassiani et al. (2005a) the formulation of the micromixing time scale in
non-homogeneous and non-isotropic turbulence requires defining the local variance σ 2

u as
the average of the variances of the three velocity components. Equation 24 is discretized in
time as follows,

d2r (t + �t) = d2r (t) + 3Crε(t0 + t)2�t (25)

d2r (t = 0) = σ 2
0 (26)

where it isworth noting that aLagrangian stochasticmodel associatedwith thesemicromixing
models (PMM and VPA) requires three parameters to be set: μt , Cr , and C0. The term C0

influences the averaged dispersion and its value has to be fixed irrespectively of the used
micromixing model (if the micromixing model respects the criterion of not altering the mean
concentration field, e.g. Pope 1998; Sawford 2004). For this reason, we evaluate C0 as the
best-fit between the numerical and experimental values of c and we found C0 = 4.5. This
value is in the range generally accepted in the literature, 2 ≤ C0 ≤ 8 (Du et al. 1995; Lien
and D’Asaro 2002; Rizza et al. 2006).

The evaluation ofCr is performed by comparing the numerical solutions of the concentra-
tion variance with the corresponding experimental values. As reported in Table 1, the best-fit
is obtained with Cr = 0.3. According to Franzese and Cassiani (2007), Cr should be equal
to C0/11. Since C0 = 4.5, the value Cr = 0.3 is therefore close to the former theoretical
prediction. Finally, μt is an empirical constant.
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